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Abstract
Starting from a solution of the problem of a mechanical oscillator coupled to
a scalar field inside a reflecting sphere of radius R, we study the behaviour
of the system in free space as the limit of an arbitrarily large radius in the
confined solution. From a mathematical point of view we show that this
way of addressing the problem is not equivalent to considering the system
a priori embedded in infinite space. In particular, the matrix elements of
the transformation turning the system to the principal axis do not tend to
distributions in the limit of an arbitrarily large sphere as should be the case if the
two procedures were mathematically equivalent. Also, we introduce ‘dressed’
coordinates which allow an exact description of the oscillator radiation process.
Expanding in powers of the coupling constant, we recover from our exact
expressions the well known decay formulae from perturbation theory.

PACS number: 1220D

1. Introduction

As is well known, the solution of coupled equations in field theory, when coupled fields
(particles) are considered, is far from being an easy problem. In fact, the only available method
to solve such a problem, apart from in a few special cases, is given by perturbation theory. Let
us consider for instance, a charged particle described by a field ψ(x) interacting with a neutral
(radiation) field ϕ(x) (for simplicity we drop out all spin and vector indices) through some
(in general non-linear) coupling f (g;ψ, ϕ), where g is some coupling constant (the charge
of the particle). The perturbative solution is obtained by means of the introduction of bare,
non-interacting fields ψ0(x), ϕ0(x), to which are associated bare quanta, the interaction being
introduced order by order in powers of the coupling constant in the perturbative expansion.
This method works remarkably well in quantum electrodynamics, weak interactions and, due
to asymptotic freedom, in the high-energy domain of quantum chromodynamics. However,
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due to the non-vanishing of the coupling constant, the idea of a bare particle associated to the
field ψ0(x) is actually an artifact of perturbation theory and is physically meaningless. The
physical particle is always coupled to the radiation field; in other words, it is always ‘dressed’
by a cloud of quanta of the neutral field ϕ(x) (photons, in the case of the electromagnetic
field). In perturbation theory this dressing of the charged particle is done by the renormalization
procedure, order by order in powers of the renormalized coupling constant. In practice we are
limited to relatively small orders, calculations becoming very involved at higher orders.

In fact, there are situations where perturbation theory is of little use, for instance, the
observation of resonant effects associated to the coupling of atoms with strong radiofrequency
fields [1]. As remarked in [2], the theoretical understanding of these effects using perturbative
methods requires the calculation of very high-order terms in perturbation theory, which makes
the standard Feynman diagram technique practically unreliable in those cases. The trials of
treating non-perturbatively such systems consisting of an atom coupled to the electromagnetic
field, have led to the idea of the ‘dressed atom’, introduced in [3] and [4]. This approach
consists of quantizing the electromagnetic field and analysing the whole system consisting of
the atom coupled to the electromagnetic field. Since then, this concept has been extensively
used to investigate several situations involving the interaction of atoms and electromagnetic
fields, for instance, atoms embedded in a strong radiofrequency field background in [5] and
[6], atoms in intense resonant laser beams in [7] or the study of photon correlations and
quantum jumps. In this last situation, as shown in [8–10], the statistical properties of the
random sequence of outcoming pulses can be analysed by a broadband photodetector and the
dressed atom approach provides a convenient theoretical framework to perform this analysis.

Besides the idea of the dressed atom in itself, another aspect that deserves attention is
the non-linear character of the problem involved in realistic situations which implies, as noted
above, very hard mathematical problems to deal with. A way to circumvect these mathematical
difficulties is to assume that under certain conditions the coupled-atom–electromagnetic-field
system may be approximated by a system composed of a harmonic oscillator coupled linearly
to the field through some effective coupling constant g. We consider in particular a system
of this type confined to a spherical cavity of radius R. This is the case in the context of the
general QED linear response theory, where the electric dipole interaction gives the leading
contribution to the radiation process [11, 13]. These authors consider a radiating dipole inside
a hollow spherical cavity. They calculate the dipole energy level shifts and the modified
dipolar decays rates for an atom located at the centre of an empty sphere.

In this sense, in a slightly different context, a significant number of works have recently
been devoted to the study of cavity QED, in particular to the theoretical investigation of higher-
generation Schrödinger cat-states in high-Q cavities, as was done for instance in [14]. Linear
approximations of this type have been applied in recent years in condensed matter physics for
studies of Brownian motion and in quantum optics to study decoherence, by assuming a linear
coupling between a cavity harmonic mode and a thermal bath of oscillators at zero temperature,
as done in [15] and [16]. To investigate decoherence of higher-generation Schrödinger cat-
states the cavity-field-reduced matrix for these states could be calculated either by evaluating
the normal-ordering characteristic function, or by solving the evolution equation for the field-
reservoir state using the normal-mode expansion, generalizing the analysis of [15] and [16].

In this paper we adopt a general physicist’s point of view; we do not intend to describe
the specific features of a particular physical situation. Instead we analyse a simplified linear
version of the atom–field system and we try to extract the most detailed information we
can from this model. We take a linear simplified model in order to try to have a clearer
understanding of what we believe is one of the essential points, namely, the need for non-
perturbative analytical treatments of coupled systems, which is the basic problem underlying
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the idea of the dressed atom. Of course, such an approach to a realistic non-linear system is an
extremely hard task and here we achieve what we think is a good agreement between physical
reality and mathematical reliability, with the hope that in future work our approach could be
transposed to more realistic situations.

We consider a non-relativistic system composed of a harmonic oscillator coupled linearly
to a scalar field in ordinary Euclidean three-dimensional space. We start from an analysis
of the same system confined in a reflecting sphere of radius R, and we assume that the free-
space solution to the radiating oscillator should be obtained taking a radius arbitrarily large
in the R-dependent quantities. This idea of confining the system in a finite volume has been
present a long time in the literature [18]. This device is introduced to make the eigenvalue
problem mathematically well defined, but the limit of taking afterwards an infinite volume
is non-trivial. In particular, as is stressed in the appendix of [18] the states in a continuous
formulation cannot simply be considered as the infinite-volume limit of confined eigenstates.
More recently, very similar ideas have been employed in radiation theory [19]. These authors
introduce and develop the resolvent method for quantum mechanical systems with an infinite
set of discrete levels, in view of its generalization to systems with a continuous spectrum. The
limit of an arbitrarily large radius in the mathematics of the confined system is taken as a good
description of the ordinary situation of the radiating oscillator in free space. We will see that
this is not equivalent to the alternative continuous formulation in terms of distributions, which
is the case when we consider a priori the system in unlimited space. The limiting procedure
adopted here allows us to avoid the inherent ambiguities present in the continuous formulation.
From a physical point of view we give a non-perturbative treatment to the oscillator radiation
introducing some coordinates that allow us to divide the coupled system into two parts, the
‘dressed’ oscillator and the field, what makes unnecessary to work directly with the concepts
of ‘bare’ oscillator, field and interaction to study the radiation process. These are the main
reasons why we study a simplified linear system instead of a more realistic model: to make
evident some subtleties of the mathematics involved in the limiting process of taking a cavity
to be arbitrarily large, and also to exhibit a rigorous, exact solution to the radiation process
by an oscillator. These aspects would be masked in the perturbative approach used to study
non-linear couplings.

We start considering a harmonic oscillator q0(t) of frequency ω0 coupled linearly to a
scalar field φ(r, t), the whole system being confined in a sphere of radius R centred at the
oscillator position. The equations of motion are

q̈0(t) + ω2
0q0(t) = 2π

√
gc

∫ R

0
d3r φ(r, t)δ(r) (1)

1

c2

∂2φ

∂t2
− ∇2φ(r, t) = 2π

√
gcq0(t)δ(r) (2)

which, using a basis of spherical Bessel functions defined in the domain 0 < |r| < R, may be
written as a set of equations coupling the oscillator to the harmonic field modes

q̈0(t) + ω2
0q0(t) = η

∞∑
i=1

ωiqi(t) (3)

q̈ i(t) + ω2
i qi(t) = ηωiq0(t). (4)

In the above equations, g is a coupling constant, η = √
2g�ω and �ω = πc/R is the interval

between two neighbouring field frequencies, ωi+1 − ωi = �ω = πc/R.
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2. The transformation to the principal axis and the eigenfrequencies spectrum

2.1. Coupled harmonic oscillators

Let us consider for a moment the problem of a harmonic oscillator q0 coupled to N other
oscillators. In the limit N → ∞ we recover our original situation of the coupling oscillator-
field after redefinition of divergent quantities, in a manner analogous to renormalization as
occurs in field theories. Systems composed of N + 1 coupled harmonic oscillators have been
already treated in the literature. Particularly, the problem of the diagonalization of the Lee–
Friedrechs Hamiltonian, which describes a two-level system interacting with a scalar field, has
been studied, for instance in [17]. From the mathematical point of view the structure of our
equation (20) is basically the same as that of equation (4) of [17], whose graphical solution
is displayed in figure 1 of [17], what means that the eigenfrequencies spectra of both coupled
systems are basically the same. This similarity reflects a formal relation between our system
and previous results in the literature for the interaction of a two-level atom with a field in the
rotating wave approximation (RWA), which neglects counterrotating terms in the atom–field
interaction. In terms of the cutoff N the coupled equations (3) and (4) are simply rewritten
taking the upper limit N instead of ∞ for the summation on the right-hand side of (3) and the
system of N + 1 coupled oscillators q0, {qi} corresponds to the Hamiltonian

H = 1

2

[
p2

0 + ω2
0q

2
0 +

N∑
k=1

(p2
k + ω2

kq
2
k − 2ηωkq0qk)

]
. (5)

The Hamiltonian (5) can be turned to the principal axis by means of a point transformation,

qµ = trµQr pµ = trµPr (6)

performed by an orthonormal matrix T = (trµ), µ = (0, k), k = 1, 2, . . . , N , r = 0, . . . , N .
The subscripts 0 and k refer respectively to the oscillator and the harmonic modes of the field
and r refers to the normal modes. The transformed Hamiltonian in the principal axis is

H = 1

2

N∑
r=0

(P 2
r + !2

rQ
2
r ) (7)

where the !r ’s are the normal frequencies corresponding to the possible collective oscillation
modes of the coupled system.

Using the coordinate transformation qµ = trµQr in the equations of motion and explicitly

making use of the normalization condition
∑N

µ=0(t
r
µ)

2 = 1, we get

trk = ηωk

ω2
k − !2

r

tr0 (8)

tr0 =
[

1 +
N∑
k=1

η2ω2
k

(ω2
k − !2

r )
2

]− 1
2

(9)

and

ω2
0 − !2

r = η2
N∑
k=1

ω2
k

ω2
k − !2

r

. (10)

There are N + 1 solutions !r to (10), corresponding to the N + 1 normal collective oscillation
modes. To gain some insight into these solutions, we take !r = ! in (10) and transform the
right-hand term. After some manipulation we obtain

ω2
0 − Nη2 − !2 = η2

N∑
k=1

!2

ω2
k − !2

. (11)
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It is easily seen that if ω2
0 > Nη2, equation (11) yields only positive solutions for !2, what

means that the system oscillates harmonically in all its modes. Indeed, in this case the left-hand
term of (11) is positive for negative values of !2. Conversely, the right-hand term is negative
for those values of !2. Thus there is no negative solution of that equation when ω2

0 > Nη2.
On the other hand it can be shown that if ω2

0 < Nη2, equation (11) has a single negative
solution !2−. In order to prove this let us define the function

I (!2) = (ω2
0 − Nη2)− !2 − η2

N∑
k=1

!2

ω2
k − !2

. (12)

Accordingly (11) can be rewritten as I (!2) = 0. It can be seen that I (!2) → ∞ as
!2 → −∞ and

I (!2 = 0) = ω2
0 − Nη2 < 0. (13)

Furthermore, I (!2) is a monotonically decreasing function in that interval. Consequently
I (!2) = 0 has a single negative solution when ω2

0 < Nη2, as we have pointed out. This
means that there is an oscillation mode whose amplitude varies exponentially and that does
not allow stationary configurations. We will disregard this last situation. Nevertheless, it is
interesting to note that, in a different context, it is precisely this negative squared frequency
solution (runaway solution) that is related to the existence of a bound state in the Lee–
Friedrechs model. This solution is considered in [20] in the framework of a model to describe
qualitatively the existence of bound states in particle physics. This question is also studied
in the relativistic context in [21]. Thus we assume ω2

0 > Nη2 and define the renormalized
oscillator frequency ω̄ [22],

ω̄ =
√
ω2

0 − Nη2. (14)

In terms of the renormalized frequency (10) becomes

ω̄2 − !2
r = η2

N∑
k=1

!2
r

ω2
k − !2

r

. (15)

From (8), (9) and (15), a straightforward calculation shows the orthonormality relations for
the transformation matrix (trµ).

We get the transformation matrix elements for the oscillator-field system by taking the
limit N → ∞ in the above equations. Recalling the definition of η from (3) and (4), we
obtain after some algebraic manipulation, from (15), (8) and (9), the matrix elements in the
limit N → ∞

tr0 = !r√
R

2πgc (!
2
r − ω̄2)2 + 1

2 (3!
2
r − ω̄)2 + πgR

2c !2
r

(16)

and

trk = ηωk

ω2
k − !2

r

tr0 . (17)

2.2. The eigenfrequencies spectrum

Let us now return to the coupling oscillator-field by taking the limit N → ∞ in the relations
of the preceding subsection. In this limit the need for the frequency renormalization in (14)
becomes clear. It is exactly the analogous of a mass renormalization in field theory; the infinite
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ω0 is chosen in such a way as to make the renormalized frequency ω̄ finite. Recalling (15),
the solutions with respect to the variable ! of the equation

ω̄2 − !2 = 2πgc

R

∞∑
k=1

!2

ω2
k − !2

(18)

give the collective modes frequencies. We recall ωk = k πc
R

, k = 1, 2, . . . , and take a positive
x such that ! = x πc

R
. Then using the identity

∞∑
k=1

x2

k2 − x2 = 1

2
(1 − πx cotπx) (19)

equation (18) may be rewritten in the form

cotπx = c

Rg
x +

1

πx

(
1 − Rω̄2

πgc

)
. (20)

The secant curve corresponding to the right-hand side of the above equation cuts only once
each branch of the cotangent on the left-hand side. Thus we may label the solutions xr as
xr = r + εr , 0 < εr < 1 , r = 0, 1, 2, . . . , and the collective eigenfrequencies are

!r = (r + εr )
πc

R
(21)

the ε’s satisfying the equation,

cot(πεr ) = !2
r − ω̄2

!rπg
+

c

!rR
. (22)

The field φ(r, t) can be expressed in terms of the normal modes. We start from its
expansion in terms of spherical Bessel functions

φ(r, t) = c

∞∑
k=1

qk(t)φk(r) (23)

where

φk(r) = sin ωk
c

|r|
r
√

2πR
. (24)

Using the principal axis transformation matrix, together with the equations of motion, we
obtain an expansion for the field in terms of an orthonormal basis associated to the collective
normal modes

φ(r, t) = c

∞∑
s=0

Qs(t)&s(r) (25)

where the normal collective Fourier modes

&s(r) =
∑
k

tsk
sin ωk

c
|r|

r
√

2πR
(26)

satisfy the equation(
−!2

s

c2 − �

)
φs(r) = 2π

√
g

c
δ(r)ts0 (27)

which has a solution of the form

φ(r, t) = −
√
g

c

ts0

2|r| sin δs
sin

(
!s

c
|r| − δs

)
. (28)
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To determine the phase δs we expand the right-hand term of (28) and compare with the formal
expansion (26). This implies the condition

sin

(
!s

c
R − δs

)
= 0. (29)

Remembering from (21) that there is 0 < εs < 1 such that !s = (s + εs)
π
R

, it is easy to show
from the condition in (27) that the phase 0 < δs < π has the form

δs = εsπ. (30)

Comparing (24) and (26) and using the explicit form (16) of the matrix element ts0 we obtain
the expansion for the field in terms of the normal collective modes

φ(r, t) = −
√
gc

2

∑
s

Qs sin
(
!s

c
|r| − δs

)
|r|
√

sin2 δs +
(
ηR
2c

)2 (
1 − sin δs cos δs

!sR/c

) . (31)

3. The limit R → ∞: mathematical aspects

3.1. Discussion of the mathematical problem

Unless explicitly stated, in the remainder of this paper the symbolR → ∞ is to be understood
as the situation of a cavity of fixed, arbitrarily large radius. In order to compare the behaviour
of the system in a very large cavity to what it would be in free space, let us first consider the
system embedded in an a priori infinite Euclidean space; in this case to compute the quantities
describing the system means essentially to replace by integrals the discrete sums appearing
in the confined problem, taking directly R = ∞. An alternative procedure is to compute the
quantities describing the system confined in a sphere of radius R and take the limit R → ∞
afterwards. This last approach to describe the system in free space should retain in some way
the ‘memory’ of the confined system. To be physically equivalent one should expect that the
two approaches give the same results. We will see that at least from a mathematical point
of view this is not exactly the case. We remark that solutions to the problem of a system
composed of an oscillator coupled to a field in free space, have been known for a long time
[23, 24], in the context of Brownian motion. These solutions are different from ours, in the
sense that they do not consider the free-space solution as a limiting case of the solution to the
system initially confined inside a box.

In the continuous formalism of free space the field normal modes Fourier components
(analogous to the components φs in (26)) are

φ! = h(!)

∫ ∞

0
dω

ω

ω2 − !2

sin ω
c
|r|

|r| (32)

where

h(!) = 2g!√
(!2 − ω̄2)2 + πg2!2

(33)

and where the we have taken the appropriate continuous form of (16) and (17). Splitting
ω/(ω2 − !2) into partial fractions we get

φ! = h(!)

∫ +∞

−∞
dω

1

ω − !

sin ω
c
|r|

|r| . (34)
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The pole at ω = ! prevents the existence of the integral in (34). The usual way to
circumvect this difficulty is to replace the integral by one of the quantities

Lim
ε→0

∫ +∞

−∞
dω

1

ω − (! ± iε)

sin ω
c
|r|

|r| ≡
∫ +∞

−∞
dω δ±(ω − !)

sin ω
c
|r|

|r|
(35)

where

δ±(ω − !) = 1

π
P

(
1

ω − !

)
± iδ(ω − !) (36)

with P standing for principal value. In our case this redefinition of the normal-mode Fourier
components may be justified by the fact that both integrals in (35) are solutions of the equations
of motion (1) and (2) for r = 0, and so the solution should be a linear combination of them.
The situation is different if we adopt the point of view of taking the limit R → ∞ in the
solution of the confined problem. In this case the Fourier component φ! is obtained by
taking the limit R → ∞ in the expression for the field, equation (28), which allows us to
obtain a uniquely defined expression to the normal-mode Fourier components, a phase δ!
corresponding to each φ! (the limit R → ∞ of δs in (22)) given by

cot δ! = 1

πg

!2 − ω̄2

!
. (37)

Also, comparing (35), (36) and (26) we see that the adoption of the continuous formalism is
equivalent to assuming that in the limit R → ∞ the elements tsi of the transformation matrix
should be replaced by δ+(ω − !) or by δ−(ω − !). This procedure is, from a mathematical
point of view, perfectly justified but at the price of losing uniqueness in the definition of the
field components.

If we take the solution of the confined problem and we compute the matrix elements tsi for
R arbitrarily large, we will see in subsection 3.2 that these elements do not tend to distributions
in this limit. As R becomes larger the set of non-vanishing elements tsi concentrates for each
i in a small neighbourhood of ωi . In the limit R → ∞ the whole set of the matrix elements
tsi contains an arbitrarily large number of elements quadratically summable. For the matrix
elements ts0 we obtain a quadratically integrable expression.

In the continuous formulation the unit matrix, corresponding to the absence of coupling,
has elements E!

ω = δ(ω − !) while, if we start from the confined situation, it can be verified
that in the limit g → 0, R → ∞, the matrix T = (tsµ) tends to the usual unit matrix of
elements Eω,! = δω,!.

The basic quantity describing the system, the transformation matrix T = (tsµ) has, as
we will see, different properties in free space, if we use the continuous formalism or if we
adopt the procedure of taking the limit R → ∞ from the matrix elements in the confined
problem . In the first case we must define the matrix elements t!ω linking free-field modes to
normal modes, as distributions. On the other hand, adopting the second procedure we will
find that the limiting matrix elements LimR→∞ tsi are not distributions, but well defined finite
quantities. The two procedures are not equivalent; the limit R → ∞ does not commute with
other operations. In other words, if we consider the system inside a sphere of radius R, the
matrix elements tsi describing the system form a countable set of finite elements whatever
the value of the radius R, no matter how large. This is not the case if we take the system a
priori embedded in free space. The two mathematical languages are not equivalent, which is
an indication of the non-trivial character of the transition from the discrete to the continuous,
a fact already known from mathematical physicists (see for instance [18]). In this paper we
take as physically meaningful the second procedure; we first solve the problem in the confined
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case (finite R) and take afterwards the limit of infinite (in the sense of arbitrarily large) radius
of the cavity. In the next subsection we perform a detailed analysis of the limit R → ∞ of
the transformation matrix (trµ).

3.2. The transformation matrix in the limit R → ∞
From (16) and (17) we obtain for R arbitrarily large

tr0 → Lim
�!→0

t!ω̄

√
�! = Lim

�!→0

√
2g!

√
�!√

(!2 − ω̄2)2 + π2g2!2
(38)

and

trk = 2gωk�ω

(ωk + !r)(ωk − !r)

!r√
(!2

r − ω̄2)2 + π2g2!2
r

(39)

where we have used the fact that in this limit �ω = �! = πc
R

. The matrix elements t!ω̄ are
quadratically integrable to one,

∫
(t!ω̄ )

2 d! = 1, as may be seen using the Cauchy theorem.
For R arbitrarily large (�ω = πc

R
→ 0), the only non-vanishing matrix elements tri are

those for which ωi −!r ≈ �ω. To get explicit formulae for these matrix elements in the limit
R → ∞, let us consider R large enough such that we may take �ω ≈ �! and consider the
points of the spectrum of eigenfrequencies ! inside and outside a neighbourhood η (defined
in (3) and (4) of ωi . We note that R > 2πc

g
implies η

2 > �ω, then we may consider R such

that the right (left) neighbourhood η
2 of ωi contains an integer number, κ , of frequencies !r

κ�ω = η

2
=
√
g�ω

2
. (40)

If R is arbitrarily large we see from (40) that η
2 is arbitrarily small, but κ grows at the same

rate, what means firstly that the difference ωi − !r for the !r ’s outside the neighbourhood η
of ωi is arbitrarily larger than �ω, implying that the corresponding matrix elements tri tend to
zero (see (39)). Secondly all frequencies !r inside the neighbourhood η of ωi are arbitrarily
close to ωi , being arbitrarily large in number. Only the matrix elements tri corresponding to
these frequencies !r inside the neighbourhood η of ωi are different from zero. For these we
make the change of labels

r = i − n
(
ωi − η

2
< !r < ωi

)
r = i + n

(
ωi > !r > ωi +

η

2

)
(41)

i = 1, 2, . . . . We get, from (39),

t ii = gωi√
(!2

r − ω̄2)2 + π2g2ω2
i

1

εi
(42)

and

t i±n
i = ∓ gωi√

(!2
r − ω̄2)2 + π2g2ω2

i

1

n ± εi
(43)

where εi satisfies (22) in this case

cot(πεi) = ω2
i − ω̄2

ωiπg
. (44)

Using the formula

π2cosec2(πεi) = 1

εi
+

∞∑
n=1

[
1

(n + εi)2 +
1

(n− εi)2

]
(45)
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it is easy to show the normalization condition for the matrix elements (42) and (43),

(tii )
2 +

∞∑
n=1

(ti−n
i )2 + (ti+ni )2 = 1 (46)

and also the orthogonality relation∑
r

tri t
r
k = 0 (i = k) (47)

in the limit R → ∞.

3.3. The transformation matrix in the limit g = 0

From (16) we get for arbitrary R

Lim
g→0

tr0 =
{

1 if !r = ω̄

0 otherwise.
(48)

From (42) and (43) we see that the matrix elements tri for i = r all vanish for g = 0. Also,
using (21) we obtain for small g

t ii ≈ 2g!iωi

(!2
i − ω̄2)(ωi + !i)

1

εi
(49)

or, expanding εi for small g from (44)

t ii (g = 0) = 1. (50)

We see from the above expressions that in the limit R → ∞ the matrix (trµ) remains
an orthonormal matrix in the usual sense as for finite R. With the choice of the procedure
of taking the limit R → ∞ from the confined solution, the matrix elements do not tend to
distributions in the free-space limit as would be the case using the continuous formalism. All
non-vanishing matrix elements tri are concentrated inside a neighbourhood η of ωi ; their set is
a quadratically summable enumerable set. The elements (tr0 ) tend to a quadratically integrable
expression.

4. The radiation process

We begin this section defining some coordinatesq ′
0, q

′
i associated with the ‘dressed’ mechanical

oscillator and to the field. These coordinates will reveal themselves to be suitable to give an
appealing non-perturbative description of the oscillator-field system. For a recent account
on cavity electrodynamics the reader is referred to [13] and, for a historical reference on the
perturbative treatment of the oscillator-field system, to 26. The general conditions that the
dressed coordinates must satisfy, taking into account that the system is rigorously described
by the collective normal coordinates modes Qr , are the following.

• Given the linear character of our problem, the coordinates q ′
0, q ′

i should be linear functions
of the collective coordinates Qr .

• They should allow us to construct orthogonal configurations corresponding to the
separation of the system into two parts, the dressed oscillator and the field.

• The set of these configurations should contain the ground state, +0.
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The last of the above conditions restricts the transformation between the coordinates
q ′
µ,µ = 0, i = 1, 2, . . . , and the collective ones Qr to those leaving invariant the quadratic

form ∑
r

!rQ
2
r = ω̄(q ′

0)
2 +

∑
i

ωi(q
′
i )

2. (51)

Our configurations will behave in a first approximation as independent states, but they will
evolve as time goes on, as if transitions among them were in progress, while the basic
configuration+0 represents a rigorous eigenstate of the system and does not change with time.
The new coordinates q ′

µ describe dressed configurations of the oscillator and field quanta.

4.1. The dressed coordinates q ′
µ

The eigenstates of our system are represented by the normalized eigenfunctions,

φn0n1n2...(Q, t) =
∏
s

[
NnsHns

(√
!s

h̄
Qs

)]
+0e−i

∑
s ns!st (52)

where Hns is the ns th Hermite polynomial, Nns is a normalization coefficient

Nns = (2−nsns !)
− 1

2 (53)

and +0 is a normalized representation of the ground state

+0 = exp

[
−
∑
s

!sQ
2
s

2h̄
− 1

4
ln
!s

πh̄

]
. (54)

To describe the radiation process, having as initial condition that only the mechanical
oscillator, q0 be excited, the usual procedure is to consider the interaction term in the
Hamiltonian written in terms of q0, qi as a perturbation, which induces transitions among
the eigenstates of the free Hamiltonian. In this way it is possible to approximately treat the
problem, having as the initial condition that only the bare oscillator be excited. But, as is
well known, this initial condition is physically not consistent due to the divergence of the bare
oscillator frequency if there is interaction with the field. The traditional way to circumvent
this difficulty is by the renormalization procedure, introducing perturbatively order-by-order
corrections to the oscillator frequency. Here we adopt an alternative procedure. We do not
make explicit use of the concepts of interacting bare oscillator and field, described by the
coordinates q0 and {qi}; we introduce ‘dressed’ coordinates q ′

0 and {q ′
i} for, respectively the

‘dressed’ oscillator and the field, defined by√
ω̄µ

h̄
q ′
µ =

∑
r

trµ

√
!r

h̄
Qr (55)

valid for arbitrary R, which satisfy the condition to leave invariant the quadratic form (51) and
where ω̄µ = ω̄, {ωi}. In terms of the bare coordinates the dressed coordinates are expressed
as

q ′
µ =

∑
ν

αµνqν (56)

where

αµν = 1√
ω̄µ

∑
r

trµt
r
ν

√
!r. (57)

As R becomes larger we get for the various coefficients α in (57):
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(a) From (38)

Lim
R→∞

α00 = 1√
ω̄

∫ ∞

0

2g!2
√
! d!

(!2 − ω̄2)2 + π2g2!2
≡ A00(ω̄, g). (58)

(b) To evaluate α0i and α0i in the limit R → ∞, we remember from the discussion in
subsection 3.2 that in the limit R → ∞, for each i the only non-vanishing matrix
elements tri are those for which the corresponding eigenfrequencies !r are arbitrarily
near the field frequency ωi . We obtain from (38), (42) and (43)

Lim
R→∞

αi0 = Lim
�ω→0

1√
ωi

(2g2ω5
i �ω)

1
2

(ω2
i − ω̄2)2 + π2g2ω2

i

( ∞∑
n=1

2εi
n2 − ε2

i

− 1

εi

)
(59)

and

Lim
R→∞

α0i = Lim
�ω→0

1√
ω̄

(2g2ω5
i �ω)

1
2

(ω2
i − ω̄2)2 + π2g2ω2

i

( ∞∑
n=1

2εi
n2 − ε2

i

− 1

εi

)
. (60)

(c) Since in the limit R → ∞ the only non-zero matrix elements tri corresponds to !r = ωi ,
the product tri t

r
k vanishes for ωi = ωk . Then we obtain from (57) and (46)

Lim
R→∞

αik = δik. (61)

Thus, from (56), (61), (59), (60) and (58) we can express the dressed coordinates q ′
µ in terms

of the bare ones, qµ in the limit R → ∞,

q ′
0 = A00(ω̄, g)q0 (62)

q ′
i = qi. (63)

It is interesting to compare (56) with (62) and (63). In the case of (56) for finite R,
the coordinates q ′

0 and {q ′
i} are all dressed, in the sense that they are all collective; both the

field modes and the mechanical oscillator cannot be separated in this language. In the limit
R → ∞, (62) and (63) tell us that the coordinate q ′

0 describes the mechanical oscillator
modified by the presence of the field in an insoluable way; the mechanical oscillator is always
dressed by the field. On the other hand, the dressed harmonic modes of the field, described by
the coordinates q ′

i , are identical to the bare field modes; in other words, the field retains in the
limit R → ∞ its proper identity, while the mechanical oscillator is always accompanied by a
cloud of field quanta. Therefore we identify the coordinate q ′

0 as the coordinate describing the
mechanical oscillator dressed by its proper field, being the whole system divided into dressed
oscillator and field, without recourse to the concept of interaction between them, this being
absorbed in the dressing cloud of the oscillator. In the next subsections we use the dressed
coordinates to describe the radiation process.

4.2. Dressed configurations and the radiation process

For clarity of language we use in the following the term ‘photon’ to indicate the field quanta,
even if we are dealing with a scalar field instead of the electromagnetic field. We thus speak
of emission or absorbtion of a photon by the oscillator, understood as a quantum of the scalar
field. Let us define for a fixed instant the complete orthonormal set of functions,

ψκ0κ1...(q
′) =

∏
µ

[
NκµHκµ

(√
ω̄µ

h̄
q ′
µ

)]
+0 (64)

where q ′
µ = q ′

0, q
′
i , ω̄µ = ω̄, ωi and Nκµ and +0 are as in (52). Using (55) the functions

(64) can be expressed in terms of the normal coordinates Qr . But since (52) is a complete
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set of orthonormal functions, the functions (64) may be written as linear combinations of the
eigenfunctions of the coupled system (we take t = 0 for the moment)

ψκ0κ1...(q
′) =

∑
n0n1...

T n0n1...
κ0κ1...

(0)φn0n1n2...(Q, 0) (65)

where the coefficients are given by

T n0n1...
κ0κ1...

(0) =
∫

dQψκ0κ1...φn0n1n2... (66)

the integral extending over the whole Q-space.
We consider the particular configuration ψ in which only one dressed oscillator q ′

µ is in
its Nth excited state

ψ0...N(µ)0...(q
′) = NNHN

(√
ω̄µ

h̄
q ′
µ

)
+0. (67)

The coefficients (66) can be calculated in this case using (66), (64) and (55) with the help of
the theorem [25]

1

m!

[∑
r

(trµ)
2

]m
2

HN



∑

r t
r
µ

√
!r

h̄
Qr√∑

r (t
r
µ)

2




=
∑

m0+m1+...=N

(t0µ)
m0(t1µ)

m1 . . .

m0!m1! . . .
Hm0

(√
!0

h̄
Q0

)
Hm1

(√
!1

h̄
Q1

)
. . . . (68)

We get

T
n0n1...

0...N(µ)0... =
(

m!

n0!n1! . . .

) 1
2

(t0µ)
n0(t1µ)

n1 . . . (69)

where the subscripts µ = 0, i refer respectively to the dressed mechanical oscillator and
the harmonic modes of the field, and the quantum numbers are submitted to the constraint
n0 + n1 + · · · = N .

In the following we study the behaviour of the system with the initial condition that only
the dressed mechanical oscillator q ′

0 be in the N th excited state. We will study in detail the
particular cases N = 1 and N = 2, which will be enough to have a clear understanding of our
approach.

N = 1. Let us call +µ
1 the configuration in which only the dressed oscillator q ′

µ is in the first
excited level. The initial configuration in which the dressed mechanical oscillator is in the
first excited level is +0

1. We have from (67), (65) (69) and (55) the following expression for
the time evolution of the first-level excited dressed oscillator q ′

µ

+
µ
1 =

∑
ν

f µν(t)+ν
1 (0) (70)

where the coefficients f µν(t) are given by

f µν(t) =
∑
s

tsµt
s
νe−i!st (71)

That is, the initially excited dressed oscillator naturally distributes its energy among itself and
all other dressed oscillators, as time increases. If the mechanical dressed oscillator is in its
first excited state at t = 0, its decay rate may evaluated from its time evolution equation

+0
1 =

∑
ν

f 0ν(t)+ν
1 (0). (72)
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In (72) the coefficients f 0ν(t) have a simple interpretation: remembering (62) and (63), f 00(t)

and f 0i (t) are respectively the probability amplitudes that at time t the dressed mechanical
oscillator will still be excited or have radiated a ‘photon’ of frequency ωi . We see that this
formalism allows a quite natural description of the radiation process as a simple exact time
evolution of the system. Let us for instance evaluate the oscillator decay probability in this
language. From (38) and (71) we get

f 00(t) =
∫ ∞

0

2g!2e−i!t d!

(!2 − ω2)2 + π2g2!2 . (73)

The above integral can be evaluated by the Cauchy theorem. For large t (t � 1
ω̄
), but arbitrary

coupling g, we obtain for the oscillator decay probability, the result

|f 00(t)|2 = e−πgt

(
1 +

π2g2

4ω̄2

)
+ e−πgt 8πg

πω̄4t3

(
sin ˜̄ωt +

πg

2〈ω̄〉 cos ˜̄ωt

)
+

16π2g2

π2ω̄8t6
(74)

where ˜̄ω =
√
ω̄2 − π2g2

4 . In the above expression the approximation t � 1
ω̄

plays a role only
in the two last terms, due to the difficulties to evaluate exactly the integral in (73) along the
imaginary axis. The first term comes from the residue at ! = ˜̄ω + iπg2 and would be the same
if we had done an exact calculation. If we consider in (74) g � ω̄, which corresponds in
electromagnetic theory to the fact that the fine-structure constant is small compared to unity,
we obtain the well known perturbative exponential decay law for the harmonic oscillator,

|f 00(t)|2 ≈ e−πgt . (75)

N = 2. Let us call +µν
11 the configuration in which the dressed oscillators q ′

µ and q ′
ν are at their

first excited level and +
µ
2 the configuration in which q ′

µ is at its second excited level. Taking
as initial condition that the dressed mechanical oscillator be at the second excited level, the
time evolution of the state +0

2 may be obtained in an analogous way to the preceding case:

+0
2(t) =

∑
µ

[
f µµ(t)

]2
+
µ
2 +

1√
2

∑
µ=ν

f 0µ(t)f 0ν(t)+
µν
11 (76)

where the coefficients f µµ and f 0µ are given by (71). Then it easy to get the following
probabilities:

• probability that the dressed oscillator will still be excited at time t:

P0(t) = |f 00(t)|4 (77)

• probability that the dressed oscillator has decayed at time t to the first level by emission
of a photon:

P1(t) = 2|f 00(t)|2(1 − |f 00(t)|2) (78)

• probability that the dressed oscillator has decayed at time t to the ground state:

P2(t) = 1 − 2|f 00(t)|2 + |f 00(t)|4. (79)

Replacing (74) in the above expressions we get rigorous expressions for the probability decays.
At leading order in g we obtain the well known perturbative formulae for the oscillator decay,

P0(t) ≈ e−2πgt (80)

P1(t) ≈ 2e−πgt(1 − e−πgt ) (81)

and

P2(t) ≈ 1 − 2e−πgt + e−2πgt . (82)
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5. Concluding remarks

In this paper we have analysed a simplified version of an atom–electromagnetic-field system
and we have tried to give the most exact and rigorous treatment we could to the problem.
We have adopted a general physicist’s point of view, in the sense that we have renounced an
approach very close to the real behaviour of a complicated non-linear system, studying instead
a simple linear model. As a counterpart, an exact solution has been possible; our dressed
coordinates give a rigorous description of the behaviour of the system . If we expand in powers
of the coupling between the mechanical oscillator and the field, we recover the well known
behaviour from perturbation theory. We have chosen to take, as the free-space solution to the
problem, the limit of the solution inside a spherical cavity as its radius becomes arbitralily large.
This choice allows a unified treatment for the system in both the confined and the free-space
situations. Moreover, if we start from the confined solution we are able to introduce ’dressed’
coordinates to describe exactly the system divided into two parts, the dressed oscillator and
field. In the limit of an arbitrarily large cavity (free space) this division is maintained and we
have exact formulae to describe the energy flow from the dressed oscillator to the field.
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